Наследственные метгемоглобинемии — наследственные и врожденные болезни плода и новорожденного

Содержание
  1. Метгемоглобинемия. Клинико-лабораторные параллели
  2. Эндогенные и экзогенные источники метгемоглобина
  3. Врожденные
  4. Приобретенные (медикаментозные воздействия)
  5. Приобретенные (химические агенты)
  6. Эндогенные причины (характерные для новорожденных и детей первого года жизни)
  7. Механизмы регуляции уровня метгемоглобина
  8. Врожденные метгемоглобинемии
  9. Клинические проявления метгмоглобинемии
  10. Диагностика метгемоглобинемии
  11. Лечение метгемоглобинемии
  12. Библиография
  13. Обследование новорожденных на 5 наследственных заболеваний — Красноярский краевой медико-генетический центр — КГБУЗ ККМГЦ
  14. Фенилкетонурия
  15. Врожденный гипотиреоз
  16. Галактоземия
  17. Адрено-генитальный синдром
  18. Муковисцидоз
  19. Врожденные и наследственные заболевания у детей
  20. Наследственные факторы и факторы среды
  21. Наследственные болезни. Геномные, хромосомные и генные мутации
  22. Термины «наследственные болезни» и «врожденные болезни» не являются синонимами
  23. Классификация наследственных болезней
  24. Особенности клинических проявлений наследственной патологии
  25. Диагностика наследственных болезней
  26. Методы пренатальной диагностики наследственных болезней

Метгемоглобинемия. Клинико-лабораторные параллели

Наследственные метгемоглобинемии - наследственные и врожденные болезни плода и новорожденного

В нормальных условиях в крови содержатся незначительные количества дериватов гемоглобина, не способных переносить кислород, так называемые дисгемоглобины: карбоксигемоглобин, метгемоглобин и сульфгемоглобин. При увеличении содержания дисгемоглобинов существенно страдает кислородотранспортная функция крови. Клинически наиболее значимы такие дисгемоглобины, как карбоксигемоглобин (СОНb) и метгемоглобин (MetHb).

Эндогенные и экзогенные источники метгемоглобина

Метгемоглобин постоянно образуется в результате нормального метаболизма клеток организма. Существует эндогенный механизм регуляции уровня метгемоглобина в крови, позволяющий поддерживать долю этой фракции не выше 1,0—1,5% от общего Hb.

 В отличие от карбоксигемоглобина, образованного в результате включения моноксида углерода в состав молекулы гемоглобина, метгемоглобин отличается от гемоглобина только наличием в геме окисленного трехвалентного железа Fe+++ вместо железа двухвалентного Fe++. В природе присутствует множество соединений, способных окислить Fe++ в Fe+++ в молекуле гемоглобина.

Помимо внешних, известны и эндогенные воздействия, а также врожденные нарушения механизмов регуляции уровня метгемоглобина.

Врожденные

  • HbM
  • Дефицит метгемоглобинредуктазы (цитохром-b5-редуктазы)

Приобретенные (медикаментозные воздействия)

  • Амилнитрит
  • Новокаин
  • Лидокаин/прилокаин
  • Дапсон
  • Нитроглицерин
  • Нитропруссид
  • Фенацетин
  • Феназопиридин
  • Метоклопрамид
  • Сульфонамиды
  • Хиноны (хлорхинон, примаквин)
  • Оксид азота
  • Др.

Приобретенные (химические агенты)

  • Анилиновые красители
  • Бутил нитрит
  • Хлорбензол
  • Изобутил нитрит
  • Нафтален
  • Нитрофенол
  • Нитрат серебра
  • Тринитротолуол
  • Пищевые продукты и питьевая вода с высоким содержанием нитратов

Эндогенные причины (характерные для новорожденных и детей первого года жизни)

  • Сниженная активность метгемоглобинредуктазы (цитохром-b5-редуктазы) по сравнению со взрослыми (норма для взрослых 10—20 U/g, у детей в возрасте до 4 месяцев составляет не более 60%);
  • Диарея (непереносимость ряда белков, вирусный и бактериальный энтероколит и т. д. );
  • Состояния, вызывающие метаболический ацидоз;
  • Колонизация кишечника нитрообразующими бактериями.

Окисляющие вещества способны вызвать метгемоглобинемию либо прямым окислением железа гемоглобина, либо вследствие образования свободных радикалов.

В дополнение к воздействию метгемоглобинобразующих лекарственных препаратов дети первого года жизни предрасположены к развитию метгемоглобинемии при приеме продуктов и питьевой воды с высоким содержанием нитратов. Кишечная флора, преобразующая нитраты в нитриты, также способствует увеличению образования метгемоглобина в детском возрасте.

Кроме того, только к 4 месяцам жизни ребенка цитохром-b5-редуктаза достигает уровня активности взрослого индивидуума. Следует также отметить, что фетальный гемоглобин, характерный для новорожденных, легче подвергается окислению по сравнению с гемоглобином взрослых.

Новорожденные чаще подвержены диарее, которая может привести к развитию метаболического ацидоза. Известно, что в условиях метаболического ацидоза ферментная система восстановления гемоглобина способна терять до 50% своей активности.

Метгемоглобинемия, связанная с диареей, вызывается комбинацией факторов даже при отсутствии системного ацидоза.

В этом случае играет роль превращение нитратов в нитриты под действием грам-отрицательных бактерий, а также идиопатическая гиперчувствительная реакция на определенные протеины, содержащиеся в питательных смесях.

Механизмы регуляции уровня метгемоглобина

Основная система защиты от окисляющих агентов, позволяющая поддерживать фракцию метгемоглобина у здоровых субъектов на уровне 1,0—1,5%, включает в себя три компонента: восстановленный никотинамид динуклеотид (НАД-Н), гемсодержащий гемопротеин цитохром b5 и фермент цитохром- b5-редуктаза. Донором электронов является продукт гликолиза НАД-Н.

 Электрон передается от НАД-Н на цитохром b5 и в конечном счете на метгемоглобин. Транспорт электрона катализируется ферментом цитохром- b5-редуктазой. Этот механизм отвечает за восстановление 99% гемоглобина из метгемоглобина.

Другой путь восстановления гемоглобина, связанный с активностью НАДФ-метгемоглобинредуктазы, в нормальных условиях оказывает незначительное влияние. Его роль повышается в случае дефицита цитохром- b5-редуктазы.

Также этот альтернативный путь имеет значение для терапевтического воздействия основного антидота, применяемого при приобретенной метгемоглобинемии — метиленового синего. Наконец, восстанавливающим гемоглобин эффектом обладают такие антиоксиданты, как восстановленный глютатион и аскорбиновая кислота.

Врожденные метгемоглобинемии

Наследственная метгемоглобинемия является редкой генетической патологией, связанной с мутацией 22q13 хромосомы, на которой обнаружена цитохром-b5-редуктаза. Заболевание наследуется по аутосомно-рецессивному типу и проявляется цианозом и высоким уровнем метгемоглобина в крови вскоре после рождения.

Так как фермент цитохром-b5-редуктаза представлен как в свободной, так и связанной форме с митохондриальной мембраной, существуют два типа гомозиготных метгемоглобинемий. При 1-ом типе, связанном с дефицитом фермента только в свободной форме, заболевание проявляется только цианозом.

При 2-ом типе, связанном с дефицитом фермента во всех клетках, течение болезни более тяжелое (отставание в умственном развитии, неврологические нарушения).

Клинические симптомы при гетерозиготной метгемоглобинемии могут появиться только в условиях так называемого «окислительного стресса».

Гемоглобин-М (HbM) представляет группу аномальных гемоглобинов с мутациями в глобиновой цепи, которые фиксируют железо гема в окисленной форме. Замена гистидина тирозином в альфа и бета цепях определяет основные характеристики HbM.

Врожденная патология, связанная с образованием гемоглобина-М, наследуется по аутосомно-доминантному типу.

Важно отметить то, что структурные изменения гема в HbM приводят к тому, что спектр поглощения HbM при проведении абсорбционной спектрофотометрии отличается от спектра обычного метгемоглобина.

Это создает проблемы при проведении ко-оксиметрии, когда отмечаются ложно-нормальные значения FМetHb, а анализатор выдает ложно-повышенные значения FCOHb или FSHb.

В такой ситуации необходимо проведение исследования с цианидом калия, либо использованием метода газовой хроматографии.

Клинические проявления метгмоглобинемии

Клинические проявления метгемоглобинемии достаточно отчетливо коррелируют с фракцией метгемоглобина в крови, измеряемой с помощью много-волнового ко-оксиметра.

Современные ко-оксиметры, входящие в состав анализаторов газов крови и кислотно-основного баланса, позволяют провести анализ методом абсорбционной спектрофотометрии по 128 длина волн с шагом в 1,5 нм.

 Взаимосвязь клинических симптомов с долей фракции метгемоглобина в крови представлена в таблице 2.

FMetHb% Симптоматика
70Выраженная клиника гипоксии, смерть

При оценке клинической симптоматики метгемоглобинемии следует учитывать значительную ранимость детей раннего возраста. Дети до 6 месяцев достаточно часто переносят диарею различной этиологии.

Также следует учитывать возможное воздействие таких окисляющих агентов, как поверхностные анестетики или зубные гели, сульфаниламиды, нафталин-содержащие шарики и т. д. Рядом авторов отмечено отсутствие цианоза у детей с выраженной метгемоглобинемией на фоне диареи.

Другие авторы отмечают специфическую непереносимость протеинов питательных смесей, как основную причину клинически значимой метгемоглобинемии.

Диагностика метгемоглобинемии

В диагностике метгемоглобинемии, несомненно, основным тестом является измерение фракции MetHb на современном ко-оксиметре. Интерпретация данных пульсоксиметрии и анализа газов крови может быть обманчивой при наличии MetHb.

Пульсоксиметрия определяет фракции деокси- и оксигемоглобина измерением отношения абсорбции в красном и инфракрасном спектре методом эмиссионной спектрометрии. При отсутствии дисгемоглобинов пик абсорбции деокси- и оксигемоглобина отмечается на волнах 660 и 940 нм с соотношением 0,43, соответствующим 100% сатурации.

Пик абсорбции метгемоглобина может быть на обеих волнах в равной степени, то есть метгемоглобинемия создает соотношение 1,0, соответствующее сатурации 85%.

Таким образом, при метгемоглобинемии свыше 30% данные пульсоксиметрии будут составлять плато 82—85%, независимо от роста уровня метгемоглобинемии, и соответственно, степени выраженности гипоксии.

Результаты стандартного анализа газов крови также не позволят диагностировать метгемоглобинемию, так как анализаторы вычисляют сатурацию SaO2%, учитывая paO2, pH, ctHb и предполагая нормальное положение кривой диссоциации оксигемоглобина. Достаточно редко встречается так называемая «псевдогемоглобинемия», когда сульфгемоглобин ко-оксиметром идентифицируется как MetHb. «Золотым стандартом» диагностики в подобных случаях является газовая хроматография.

Цианоз является наиболее частым симптомом метгемоглобинемии и служит причиной проведения дифференциальной диагностики с заболеваниями сердечно-сосудистой и дыхательной систем. Для метгемоглобинемии характерно несоответствие выраженности цианоза и степени гипоксемии.

Заболевания, сопровождающиеся выраженным цианозом, например, тромбоэмболия легочной артерии, проявляются отчетливым снижением paO2, которое не наблюдается при метгемоглобинеии и paO2 может быть выше 150 мм Hg. Другим диагностическим тестом является ингаляция кислорода, которая не приводит к уменьшению степени цианоза при метгемоглобинемии.

Артериальная кровь при метгемоглобинемии, бывает настолько темной, что при пункции артерии специалист может заподозрить попадание в венозный сосуд. В этом случае могут быть полезны самозаполняющиеся шприцы для забора артериальной крови.

Пульсирующее поступление крови в самозаполняющийся шприц подтверждает попадание в артериальный сосуд, так как давление около 10 мм Hg в венах недостаточно для поступления крови «самотеком».

Лечение метгемоглобинемии

Лечение метгмоглобинемии базируется на восстановлении окисленного трехвалентного железа до двухвалентного. Методом выбора является внутривенное введение метиленового синего в дозе 1—2 мг/кг в течение 3-5 минут.

Метиленовый синий рекомендован для введения пациентам с FmetHb 20% при наличии клинической симптоматики, при отсутствии симптомов — при уровне FmetHb 30%. Улучшение обычно наступает в течение 1 часа. При отсутствии улучшения допустимо повторное введение метиленового синего в дозе 1 мг/кг.

Необходимо помнить, что метиленовый синий сам по себе является окисляющим агентом и может вызвать развитие гемолитической анемии, особенно при превышении его дозы свыше 4 мг/кг или у пациентов с дефицитом глюкозо-6-фосфатдегидрогеназы.

При сопутствующем наличии метгемоглобинемии и дефицита глюкозо-6-фосфатдегидрогеназы терапия метиленовым синим может быть неэффективна, так как у этих пациентов имеется недостаточность НАДФ-кофактора. Альтернативным методом лечения этих больных является обменная гемотрансфузия.

Также применяется введение N-ацетилцистеина, как предшественника глютатиона или глюкозы, как кофактора синтеза НАДФ. Полезным также оказывается внутривенное введение такого антиоксиданта, как аскорбиновая кислота в дозе 1—2 г.

В заключение следует отметить, что активное внедрение в практику работы отделений интенсивной терапии современных ко-оксиметров позволяет выяснить причину развития гипоксических состояний и определить степень дисгемоглобинемии, в частности метгемоглобинемии, во многих ургентных ситуациях, ранее остававшихся в области «terra incognita».

Библиография

  1. Челноков С. Б., Яковлева Е. А.,Пудина Н.  А. Случай тяжелой метгемоглобинемии у недоношенного новорожденного ребенка// Вестник интенсивной терапии. 2002. № 2. С. 18-21.
  2. Торшин В.  А. Клинически значимые дисгмоглобины. Карбоксигемоглобин // Лаборатория. 2007. № 1. С. 17-18.
  3. Kyle A.  Nelson, Mark A. Hostetler An Infant with Methemoglobinemia// Hospital Physician. 2003. February. рр. 31-38.
  4. Shannon Haymond, Rohit Cariappa, Charles S. Eby, Mitchell Scott Laboratory Assessment of Oxygenation in Methemoglobinemia // Clinical Chemistry. 2005; 51-2. рр. 434-444.
  5. Chris Higgins Causes and clinical significance of increased methemoglobin. http://www.bloodgas.org/, 2006, October.

Обследование новорожденных на 5 наследственных заболеваний — Красноярский краевой медико-генетический центр — КГБУЗ ККМГЦ

Наследственные метгемоглобинемии - наследственные и врожденные болезни плода и новорожденного
Скачать памятку

Скрининг новорожденных проводится для выявления некоторых наследственных болезней, которые не проявляются при рождении, но в последующем приводят к тяжелым нарушениям развития, умственной отсталости и даже смерти. Обнаружение этих заболеваний в доклинической стадии и раннее назначение лечения препятствуют развитию заболевания и дают возможность сделать жизнь таких детей полноценной.

Процедура скрининга очень проста. Новорожденному перед выпиской из родильного дома (доношенным детям на 4 сутки жизни, недоношенным на 7 сутки) из пятки берется несколько капель крови на особую фильтровальную бумагу.

Бумага с пятнами крови высушивается и направляется в лабораторию центра медицинской генетики, где с помощью различных лабораторных тестов проводятся анализы.

Одни и те же образцы крови могут быть использованы для диагностики разных наследственных заболеваний.

Результаты тестирования поступают к врачу-генетику медико-генетического центра. Если результаты тестов «нормальные», это означает, что ребенок не имеет ни одного из тестируемых наследственных заболеваний.

Если какие-то лабораторные показатели не соответствуют норме, то врач-генетик сообщит эту информацию в детскую поликлинику по месту жительства ребенка для того, чтобы провели повторный забор крови (ретестирование).

В этом случае могут иметь место две ситуации: либо первый тест был так называемым «ложноположительным», и тогда при ретестировании показатели будут в норме, а ребенок, следовательно, здоров; либо в результате повторного исследования подтвердится диагноз наследственного заболевания.

Обычно такое лабораторное тестирование занимает 2-3 недели. Пройти ретестирование совершенно необходимо, и чем раньше, тем лучше, чтобы не жить в страхе за будущее своего ребенка.

При обнаружении у ребенка одного из тестируемых заболеваний, которое еще не проявилось клинически, врач срочно назначает соответствующее лечение. Раннее и тщательно проводимое лечение позволит не допустить развертывания признаков болезни и даст возможность ребенку, а затем и взрослому человеку, быть здоровым.

В нашей стране проводится массовое обследование новорожденных на пять наследственных болезней.

Фенилкетонурия

Заболевание обусловлено отсутствием или сниженной активностью фермента, который в норме расщепляет аминокислоту фенилаланин. Эта аминокислота содержится в подавляющем большинстве видов белковой пищи.

Без лечения фенилаланин накапливается в крови и приводит, в первую очередь, к повреждению мозга, судорогам, умственной отсталости.

Такие симптомы могут быть предупреждены благодаря раннему назначению специального диетического лечения.

Врожденный гипотиреоз

Заболевание связано с недостаточностью гормонов щитовидной железы, которая приводит к отставанию в росте, нарушению развития мозга и другим клиническим проявлениям. Если врожденный гипотиреоз обнаружен во время скрининга новорожденных, то назначенный врачом прием гормонов щитовидной железы позволяет полностью предотвратить развитие заболевания.

Галактоземия

Заболевание, при котором нарушено превращение галактозы, присутствующей в молоке, в глюкозу, использующуюся тканями ребенка в качестве энергетического ресурса. Галактоземия может быть причиной смерти младенца или слепоты и умственной отсталости в будущем. Лечение заключается в полном исключении молока и всех других молочных продуктов из диеты ребенка.

Адрено-генитальный синдром

Группа патологических состояний, обусловленных недостаточностью гормонов, вырабатываемых корой надпочечников. Это приводит к нарушению развития половых органов и в тяжелых случаях может обусловить потерю соли почками и явиться причиной смерти. Прием недостающих гормонов в течение жизни останавливает развитие болезни.

Муковисцидоз

Заболевание, при котором патология проявляется в разных органах из-за того, что слизь и секрет, вырабатываемые клетками легких, поджелудочной железы и других органов, становятся густыми и вязкими, что может привести к тяжелым нарушениям функции легких, проблемам с пищеварением и к нарушениям роста. Раннее обнаружение заболевания и его раннее лечение может помочь уменьшить эти проявления заболевания.

Выявление этих тяжелых заболеваний у новорожденных и своевременное назначение профилактического лечения позволит дать семье и обществу полноценных людей.

Уважаемые мамы и папы, проследите, чтобы у вашего ребенка взяли несколько капель крови из пятки для тестирования на перечисленные заболевания.
Сообщайте точный адрес, где будет находиться ребенок после выписки из родильного дома, для того, чтобы с вами было легко связаться.

Врожденные и наследственные заболевания у детей

Наследственные метгемоглобинемии - наследственные и врожденные болезни плода и новорожденного

Задачей медицинской (клинической) генетики является разработка методов диагностики, лечения и профилактики наследственных болезней человека. К настоящему времени описано свыше 3500 наследственных болезней, около 5-5,5 % детей рождаются с наследственной или врожденной патологией.

Наследственные факторы и факторы среды

С генетической точки зрения все болезни в зависимости от роли наследственных и средовых факторов в их развитии можно подразделить на 3 группы.

  1. Наследственные болезни. Фенотипическое проявление мутации как этиологического фактора практически не зависит от среды; последняя может только изменять выраженность симптомов и тяжесть течения болезни. Это генные и хромосомные наследственные болезни (гемофилия, фенилкетонурия, муковисцидоз, болезнь Дауна и др.).
  2. Болезни с наследственной предрасположенностью. Их в свою очередь можно подразделить еще на два вида. Болезни, наследственность при которых является этиологическим фактором, но для их проявления необходимо действие соответствующего фактора внешней среды (например, подагра, диабет).

Болезни, этиологическими факторами при которых являются средовые влияния, однако частота возникновения и тяжесть течения болезней зависят от наследственной предрасположенности. К таким болезням относятся атеросклероз, гипертоническая болезнь, язвенная болезнь, псориаз и др.

  1. Болезни, в происхождении которых наследственность не играет роли. Это, например, травмы, ожоги, инфекционные болезни. Генетические факторы в этом случае могут влиять только на течение патологических процессов (скорость регенерации, выздоровления, компенсации функций).

Наследственные болезни. Геномные, хромосомные и генные мутации

Этиологическими факторами наследственных болезней являются геномные, хромосомные и генные мутации.

Заболевания, обусловленные изменениями числа и структуры хромосом (геномные и хромосомные мутации соответственно), называются хромосомными болезнями. При хромосомных болезнях нарушается сбалансированность набора генов и наблюдаются отклонения от нормального развития организма.

Это приводит к внутриутробной гибели эмбрионов и плодов, врожденным порокам развития и другим клиническим проявлениям.

Чем больше хромосомного материала вовлечено в мутацию, тем раньше проявляется заболевание и тем значительнее нарушения в физическом и психическом (осмотр детского психолога, клиника «Маркушка») развитии индивидуума.

Заболевания, обусловленные изменениями структуры молекулы ДНК (генные мутации), называются генными болезнями.

Термины «наследственные болезни» и «врожденные болезни» не являются синонимами

Врожденные болезни (проявляющиеся с момента рождения) могут быть обусловлены как наследственными, так и средовыми факторами (сифилис, краснуха — вакцинация детей против краснухи в детской поликлинике «Маркушка»). В то же время не все наследственные болезни являются врожденными. Некоторые болезни проявляются в детском (гемофилия), другие — в зрелом и даже в пожилом (болезнь Альцгеймера) возрасте.

Классификация наследственных болезней

В основу генетической классификации наследственных болезней положен этиологический принцип: тип мутаций и характер взаимодействия со средой.

Наследственные болезни подразделяются на 5 групп: генные болезни, хромосомные болезни, болезни с наследственной предрасположенностью (мультифакториальные), генетические болезни соматических клеток и болезни генетической несовместимости матери и плода.

Болезни при несовместимости матери и плода по антигенам возникают в результате иммунологической реакции материнского организма на антигены плода. Наиболее хорошо изученным заболеванием этой группы является гемолитическая болезнь новорожденных, развивающаяся вследствие несовместимости матери и плода по Rh-антигенам. Эта группа составляет около 1% патологии новорожденных.

Особенности клинических проявлений наследственной патологии

Наследственные заболевания часто носят семейный характер. В то же время наличие заболевания только у одного из членов родословной не исключает наследственного характера этой болезни (новая мутация, появление рецессивной гомозиготы).

Для наследственных заболеваний, проявляющихся в любом возрасте, характерно прогрессирующее хроническое течение.

Многие наследственные болезни носят врожденный характер. Не менее 25 % всех форм генных наследственных болезней и практически все хромосомные болезни начинают формироваться уже внутриутробно.

Одним из признаков наследственной патологии является устойчивость к терапии, хотя в некоторых случаях лечение эффективно.

Диагностика наследственных болезней

Диагностика наследственной патологии является сложным и трудоемким процессом и основывается на данных клинического, генеалогического и параклинического обследования.

Наследственные болезни могут протекать сходно с ненаследственными. В некоторых случаях наследственная патология может сопутствовать основному, ненаследственному, заболеванию.

Поэтому постановка диагноза включает общее клиническое обследование больного и (при подозрении на конкретную наследственную болезнь) специализированное медико-генетическое обследование.

Для обследования больных и решения вопросов патогенеза наследственных заболеваний в медицинской генетике широко применяются общеклинические методы: электрокардиография, электроэнцефалография, электромиография, биохимические анализы биологических жидкостей (в т.ч. анализ крови на биохимию — детская поликлиника «Маркушка»), биопсия тканей и др.

Однако имеется целый ряд специфических методов, с помощью которых можно изучить вопросы возникновения, развития, распространения, механизмы передачи из поколения в поколение наследственных болезней и роль генотипа и факторов среды в их проявлении.

Клиникогенеалогический метод. Он основан на построении родословных и прослеживании в ряду поколений передачи определенного признака. Этот метод относится к наиболее универсальным методам медицинской генетики.

Близнецовый метод изучения генетики человека позволяет определить роль генотипа и среды в проявлении признаков.

Цитогенетические методы. Основаны на макроскопическом исследовании кариотипа.

Биохимические методы. Основаны на изучении активности ферментных систем либо по активности самого фермента, либо по количеству конечных продуктов реакции, катализируемой данным ферментом. С помощью биохимических нагрузочных тестов можно выявлять гетерозиготных носителей патологических генов, например фенилкетонурии.

Молекулярно-генетические методы. Позволяют анализировать фрагменты ДНК, находить и изолировать отдельные гены и их сегменты и устанавливать в них последовательность нуклеотидов.

Методы гибридизации нуклеиновых кислот. Позволяют выявить специфические фрагменты ДНК, обнаружить единственный ген среди десятков тысяч.

Методы генетики соматических клеток. Позволяют устанавливать группы сцепления у человека, выяснять последовательность расположения генов.

Экспресс-методы. Быстрые предварительные методы изучения генетики ребенка. Часто используются с целью выявления наследственной патологии как скрининг-методы.

Например, скрининг новорожденных на фенилкетонурию, гипотиреоз, беременных на альфа-фетопротеин, при помощи которого можно пренатально определить у плода некоторые пороки развития (например, анэнцефалию, открытые формы спинномозговых грыж, синдром Дауна).

Методы пренатальной диагностики наследственных болезней

Пренатальная диагностика связана с решением ряда биологических и этических проблем до рождения ребенка, так как при этом речь идет не об излечении болезни, а о предупреждении рождения ребенка с патологией, не поддающейся лечению (обычно путем прерывания беременности с согласия женщины).

При современном уровне развития пренатальной диагностики можно установить диагноз всех хромосомных болезней, большинства врожденных пороков развития, энзимопатий.

Часть из них можно установить практически в любом сроке беременности (хромосомные болезни), часть — после 12-й недели (редукционные пороки конечностей, атрезии, анэнцефалию), часть — только во второй половине беременности (пороки сердца, почек).

Показания для пренатальной диагностики: наличие в семье точно установленного наследственного заболевания, возраст матери старше 37 лет, носительство матерью гена Х-сцепленного рецессивного заболевания, гетерозиготность обоих родителей по одной паре аллелей при патологии с аутосомно-рецессивным типом наследования и др.

Знай об организме
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: